Swinburne Research Bank
http://researchbank.swinburne.edu.au

Lin, X., Zhou, X., Liu, C., & Zhou, X. (2001). Efficiently computing weighted
proximity relationships in spatial databases.

Originally published in X. S. Wang, G. Yu, & H. Lu (eds.) Proceedings of the 2nd
International Conference on Advances in Web-Age Information Management
(WAIM), Xi'an, China, 09-11 July 2001.

Lecture notes in computer science (Vol. 2118, pp. 279-290). Berlin: Springer.

Available from: http://dx.doi.org/10.1007/3-540-47714-4 26

Copyright © Springer-Verlag Berlin Heidelberg 2001.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://www.springerlink.com/.

SWIN
BUR

SWINBURNE
UNIVERSITY OF
TECHNOLOGY

- Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

http://dx.doi.org/10.1007/3-540-47714-4_26
http://www.springerlink.com/

Efficiently Computing Weighted Proximity
Relationships in Spatial Databases

Xuemin Lin' Xiaomei Zhou! Chengfei Liu? Xiaofang Zhou?

! School of Computer Science and Engineering, University of New South Wales
Sydney, NSW 2052, Australia. lzue@cse.unsw.edu.au
2 School of Computer and Information Science, University of South Australia
Adelaide, SA 5095, Australia. LiuQcs.unisa.edu.au
Department of Computer Science and Electrical Engineering
University of Queensland, QLD 4072, Australia. zzf@csee.uq.edu.au

Abstract. Spatial data mining recently emerges from a number of real
applications, such as real-estate marketing, urban planning, weather fore-
casting, medical image analysis, road traffic accident analysis, etc. It de-
mands for efficient solutions for many new, expensive, and complicated
problems. In this paper, we investigate the problem of evaluating the top
k distinguished “features” for a “cluster” based on weighted proximity
relationships between the cluster and features. We measure proximity
in an average fashion to address possible nonuniform data distribution
in a cluster. Combining a standard multi-step paradigm with new lower
and upper proximity bounds, we presented an efficient algorithm to solve
the problem. The algorithm is implemented in several different modes.
Our experiment results not only give a comparison among them but also
illustrate the efficiency of the algorithm.

Keywords: Spatial query processing and data mining.

1 Introduction

Spatial data mining is to discover and understand non-trivial, implicit, and pre-
viously unknown knowledge in large spatial databases. It has a wide range of ap-
plications, such as demographic analysis, weather pattern analysis, urban plan-
ning, transportation management, etc. While processing of typical spatial queries
(such as joins, nearest neighbouring, KNN, and map overlays) has been received
a great deal of attention for years [2, 3, 20], spatial data mining, viewed as ad-
vanced spatial queries, demands for efficient solutions for many newly proposed,
expensive, complicated, and sometimes ad-hoc spatial queries.

Inspired by a success in advanced spatial query processing techniques [2, 3, 8,
20], relational data mining [1, 18], machine learning [7], computational geometry
[19], and statistics analysis [11, 21], many research results and system prototypes
in spatial data mining have been recently reported [2, 4, 5, 10, 12, 14, 16]. The
existing research not only tends to provide system solutions but also covers quite
a number of special purpose solutions to ad-hoc mining tasks. The results include
efficiently computing spatial association rules [13], spatial data classification and

generalization [10, 14, 16], spatial prediction and trend analysis [5], clustering
and cluster analysis [4, 12, 17, 23], mining in image and raster databases [6], etc.

Clustering has been shown one of the most useful tools to partition and
categorize spatial data into clusters for the purpose of knowledge discovery. A
number of efficient algorithms [4, 17, 22, 23] have been proposed. While most
existing clustering algorithms are effective to construct “clusters”, they are in-
effective to provide the reasons why the clusters are there spatially. Moreover,
in many applications clusters are naturally existing; for example, a cluster could
be a residential area. Therefore, it is equally important, if not more, to find out
spatial properties of clusters based on their surrounding “features”. The prox-
imity is one of the most common measurements to represent the relationship
between clusters and features. In [12], the problem of computing k closest fea-
tures surrounding a set (cluster) of points in two dimensional space based on
average/aggregate proximity relationships was investigated.

The problem of computing k closest features has a number of useful real appli-
cations. For instance, in a spatial database for the real-estate information, a set
of points represents a residential area where each point represents a house/land
parcel. A polygon corresponds to a vector representation of feature, such as a
lake, golf course, school, motor way, etc. In this application, buyers or develop-
ers may want to know why some residential area is so expensive. Consequently
they may want to know the k closest features. As pointed in [12], in such an
application it is better to measure the proximity relationship in an average fash-
ion to address a possible nonuniform data distribution. Furthermore, in such an
application it may be more important to know that a residential area is only
5 kilometres away from the downtown area rather than 500 meters away from
a swimming pool. This suggests that we should put weights when evaluate fea-
tures, so that the obtained top k features are also based on their importance.
In this paper, we investigate the problem of computing the weighted k closest
features (WK); that is, each feature is associated with a weight. We will formally
define the WK problem in the next section.

In WK, we assume that the “proximity value” between a cluster and feature
has not been pre-computed, nor stored in the database. A naive way to solve
WK is to first precisely compute the proximity value between each feature and a
given cluster, and then to solve the WK problem. However, in practice there may
be many features far from being part of solution to WK; and thus they should
be ruled out by a fast filtering technique. The filtering technique developed in
[12] for unweighted problem is not quite suitable to WK, because it specifically
designed to solve unweighted problem. Motivated by these, our algorithm adopts
a standard multi-step technique [2, 12, 13] in combining with novel and pow-
erful pruning conditions to filter out uninvolved features. The algorithm has
been implemented in several different modes for performance evaluation. Our
experiments clearly demonstrate the efficiency of the algorithm.

The rest of the paper is organized as follows. In section 2, we present a precise
definition of WK as well as a brief introduction of an adopted spatial database
architecture. Section 3 presents our algorithm for solving WK. Section 4 reports

our experimental results. In section 5, a discussion is presented regarding various
modifications of our algorithm; this will be together with the conclusions. Note,
due to the space limitation we do not provide the proofs of the theorems in this
paper; the interested readers may refer to a long version [15] of the paper for
these.

2 Preliminary

In this section we precisely define the WK problem. A feature F' is a simple
and closed polygon [19] in the 2-dimensional space. A set C of points in the
two dimensional space is called cluster for notation simplicity. Following [12],
we assume that in WK a cluster is always outside [19] a feature. Note that
this assumption may support many real applications. For instance, in real-estate
data, a cluster represents a set of land parcels, and a feature represents a man-
made or natural place of interest, such as lake, shopping center, school, park,
and entertainment center. Such data can be found in many electronic maps in a
digital library.

To efficiently access large spatial data (usually tera-bytes), in this paper we
adopt an extended-relational and a SAND (spatial-and-non-spatial database)
architecture [3]; that is, a spatial database consisting of a set of spatial objects
and a relational database describing non-spatial properties of these objects.

Below we formally define WK. In WK, the input consists of: 1) a cluster Cy;
2) aset IT = {m; : 1 < j < m} of groups of features (i.e., each w; is a group of
features); and 3) k to indicate the number of features to be found.

Given a feature F' and a point p outside F', the length of the actual (working
or driving) shortest path from p to F is too expensive to compute in the presence
of tens of thousands of different roads. In WK, we use the shortest Euclidean
distance from p to a point in the boundary of F', denoted by d(p, F'), to reflect the
geographic proximity relationship between p and F. We believe that on average,
the length of an actual shortest path can be reflected by d(p, F'). We call d(p, F)
the distance between p and F'. Note that F' may degenerate to a line or a point.
Moreover, for the purpose of computing lower and upper proximity bounds in
Section 3, the definition of d(p, F') should be extended to cover the case when p
is inside or on the boundary of F'; that is, d(p, F') = 0 if p is inside of or on the
boundary of F.

To address a possible arbitrary distribution of the points in C, we use the
following average prozimity value to quantitatively model the proximity relation-
ship between F' and C"

P(C,F) ! > dp. F).

O] =2

As mentioned earlier, in WK we will rank the importance of a feature by a
positive value. More important a feature is, smaller its weight is. A weight can
be assigned to a group of features by either a user or the system default. A set

{w; : 1 < j < m} of positive values is also part of the input of WK. WK can
now be modelled to find the k features in 27:1 m; such that those k features
lead to the k smallest values of the following function:

WAP(Cy, F) = Wp AP(Cy, F) where F € 377" | 7).

Here, Wy is the weight of F'; that is, Wr = w; for F' € m;. Note that in [12], the
proximity between a cluster and a feature is measured in an aggregate fashion;
that is, > - d(p, F) is used there instead of using \]7\ > pec d(p, F). However,
it should be clear that to compute the k closest features to a given cluster these
two measurements are equivalent. This means that the top k feature problem in
[12] is a special case of WK where all the weights are 1.

3 Algorithms for Solving WK

In this section, we present an efficient algorithm for solving WK. The algorithm is
denoted by CWK, which stands for Computing the Weighted K closest features.

An immediate way (brute-force) to solve WK is to 1) compute W AP (Cy, F')
for each pair of a given cluster Cy and a feature F', and then to 2) compute
the k closest features based on their WAP values. Note that WAP(Cy, F') can
be easily computed in O(|Cy||F|) according to the definition of WAP(C, F).
Consequently, the brute-force approach runs in time O(|Co| Z;’L] Yoren; |FD)-
Practically, there may be many features involved in the computation; each fea-
ture may have many edges; and the given cluster may have many points. These
make the brute-force approach probably computational prohibitive in practice.
Our experiment results in Section 4.3 confirm this.

One possible way to resolve this problem is to adopt a multi-step paradigm
[2, 12, 13]. First, we use a filtering step to filter out the features, and then do
precise computation of W AP values for those candidate features only. A simple
and very effective technique was proposed in [12] to solve WK with all weight
equal to 1: draw a circle encompassing the cluster and then keep the features with
an intersection to the circle as the candidates.

If we want to apply the above technique generally to WK with different
weights, we may have to draw different circles for different groups of features
due to different weights. Because for each group of features we have to keep at
least k features, there may be too many candidates left and the filter may not
be powerful enough,

In this paper, we propose a filtering technique based on the lower and upper
bound for WAP values. Instead of computing the actual value of WAP(Cy, F) in
quadratic time O(|C||F|), we may compute a lower bound and an upper bound
for WAP(Cy, F) in a linear time O(|F'|) with respect to the size of F. By these
bounds, for the given cluster Cy, we can rule out the features, which are definitely
not closest to Cy in a weighted sense; Thus we do not have to precisely compute
the weighted average proximity values between these eliminated features and
Cy- This is the basic idea of our algorithm. In our algorithm CWK, we have

not integrated our algorithm into a particular spatial index, such as R-trees,
R*-trees, etc, due to the following reasons.

— There may be no spatial index built.

— The WK problem may involve many features from different tables/electronic
thematic maps; and thus, spatial index built for each thematic map may be
different. This brings another difficulty when making use of spatial indices.

— A feature or a cluster, which is qualified in WK, may be only a part of a
stored spatial object; for instance, a user may be interested only in certain
part of a park. This makes a possible existing index based on the stored
spatial objects not quite applicable.

— The paper [12] indicates the existing spatial indexing techniques do not nec-
essarily support well the computation of aggregate distances; the argument
should be also applied to average distance computation.

The algorithm CWK consists of the following 3 steps:

Step 1: Read the cluster C into buffer.

Step 2: Read features batch by batch into buffer, compute lower and upper
bounds of WAP(Cy, F) for the given cluster Cy. Then determine whether
or not F' should be kept for the computation of WAP(Cy, F).

Step 3: Apply the above brute-force method to the remaining features to solve
problem WK.

In the next several subsections we detail the algorithm step by step. Clearly,
a success of the algorithm CWK largely relies on how good the lower and upper
bounds of W AP are. The goodness of lower and upper bounds means two things:
1) the bounds should be reasonably tight, and 2) the corresponding computation
should be fast. We first present the lower and upper bounds.

Note that for presentation simplicity, the algorithms presented in the paper
are restricted to the case when features and clusters qualified in WK are stored
spatial objects in the database. However, they can be immediately extended to
cover the case when a feature or a cluster is a part of a stored object.

3.1 Lower and Upper Bounds for Average Proximity

In this subsection, we recall first some useful notation. The barycenter (centroid)
of a cluster C is denoted by b(C). A convez [19] polygon encompassing a feature F'
is called a bounding convex polygon of F'. The smallest bounding convex polygon
of F is called the convex hull [19] of F' and is denoted by Pr. An isothetic [19)
rectangle is orthogonal to the coordinate axis. The minimum bounding rectangle
of F refers to the minimum isothetic bounding rectangle of F' and is denoted by
Rp.

Given two minimum bounding rectangles Rc and Ry respectively for a clus-
ter C' and a feature F', an immediate idea is to use the shortest distance and the
longest distance between R and Ry to respectively represent a lower bound and
an upper bound of AP(C, F'). However, this immediate idea has two problems.

The first problem is that when two rectangles intersect with each other (note
that in this case C' and F' do not necessarily have an intersection), the short-
est and longest distances between R and Ry are not well defined. The second
problem is that the bounds may not be very tight even if the two rectangles do
not intersect. These also happen similarly for convex hulls. Below, we present
new and tighter bounds.

Our lower bound computation is based on the following Lemma.

K K . K
Lemmal. Zizl 5”12 + y? > \/(Zi:1 r;)? + (Zi:1 Yi)?

Theorem 2. Suppose that C is a cluster, F is a feature, and P is either the con-
vex hull or the minimum bounding rectangle of F. Then, AP(C,F) > d(b(C), P);
in other words d(b(C), P) is a lower bound of AP(C,F).

Clearly, the above lower bound is tighter than the shortest distance between
two bounding rectangles.

Suppose that p is an arbitrary point. For a cluster, we use A\(p, C) to denote
the maximum distance between p to a point in C. Below is an upper bound of
AP.

Theorem 3. Suppose that p is an arbitrary point, C' is a cluster, and F is a
feature. Then AP(C,F) < d(p,F) + A(p,C).

It is clear the right hand side in the inequality of Theorem 3 can be used as
an upper bound of AP; and can be computed in time O(|F|) once the compu-
tation of A(p,C) is done. We believe that this bound may be tighter than the
longest distance between the minimum bounding rectangles. However, we cannot
generally prove this because the tightness of the upper bound depends on the
choice of p. In our algorithm, we will choose the centroid of a cluster C in the
upper bound computation since it has to be used to obtain a lower bound. Note
that generally d(b(C), Pr) and d(b(C), F') respectively in the lower and upper
bounds cannot replace each other if F' is not a convex polygon.

3.2 Read in the relevant cluster

In Step 1, we first read in the cluster Cy, which are specified by a user, into buffer.
Then, we compute the centroid b(Cp) and the maximal distance A(b(Cyp), Cp).
Clearly, this step takes linear time with respect to the size of Cj.

3.3 Read in and Filter out Features

This subsection presents Step 2. Consider that the total size of features to be
processed may be too large to fit in buffer simultaneously. Features should be
read into buffer batch by batch.

Note that in WK, our primary goal is to make a candidate set as close as
possible to the actual solution; this means a small set of candidates will be

expected to be left in the main memory after filtering step. Therefore, we may
store the detail of the candidates in the main memory for a further processing.
Particularly, the filtering step developed in CWK is to:

1. initialize the candidate set by assigning the first k features, and then,

2. examine the rest of the features one by one to determine whether or not
they are candidates. In case that a new candidate is added, we should also
check whether or not certain features included in the candidate set should
be removed.

The following lemma can be immediately verified.

Lemmad4. For a cluster C and a feature F' with weight Wg,
Wrd(b(C), Pr) < WAP(C,F) < Wg(d(p, F) + A(p, C)).

Lemma 4 means that Wrd(b(C), Pr) is the lower bound of WAP(C, F) de-
noted by LBp, while Wg(d(p, F) + A(p,C)) is the upper bound of WAP(C, F)
denoted by UBp.

Lemma5. Suppose w is a set of candidate features, Y is the k’th smallest
UBpg for every F € w. Then, F' is a feature in the solution of WK only if
WAP(C,F') <Y. Thus, LBp <Y.

Suppose that a new feature F' is processed, Lemma 5 says that if LBp for
F is greater than Y, than F' should not be considered as part of the solution of
WK.

Consider the situation that a new F' is added to m and the Y is updated
(changed smaller). Then, a feature F' in 7 may no longer be a candidate if
LBp: >Y; and thus we have to remove F’ from 7. A naive way to do this is to
scan the whole 7 to determine whether or not there is feature to be removed.
To speed up this process, we can divided 7 into two parts A and B, where B
is the set of candidates to be removed. We make A and B two ordered linked
lists to store the candidates, let A has the fixed length of &k, and use X to store
the current largest lower bound of F' in A. Each element F' in A or B stores the
identifier F'ID, LBr and UBp, and the spatial description of F. A and B are
initially set to empty. The elements in A and B are sorted on the lexicographic
order of (LBp,UBp) for each F.

Specifically, to process a F', CWK first computes the values of LBr and UBp
for WAP(C, F). Then, add the first k features to A according to a lexicographic
order of (LBp,UBpF). For the rest of the features, if LBr < Y, it will be a
candidate and kept in A or B. More specifically, F will be added to A in a
proper position if (LBr,UBfr) < (LBp/,UBp+), where F' is the last element
of A; and then F' will be moved to B. When (LBpr,UBF) > (LBp/,UBpg), F
will be added to B. Once a new F' is added to the A or B, X and Y should be
updated. Each time after Y is reduced, we also need to check B to remove those
features whose lower bounds are bigger than Y. Below is a precise description
of Step 2.

Step 2 in CWK:
A+ 0; B+ 0;
Read in features;
for the first k features in 7 do
{ compute lower and upper bounds LBy and UByF for each feature F;
keep them in A and compute X and Y; }
m = 7 - { the first k features in 7 };
for each F' € 7 do
{ compute LBp and UBp;
if LBr <Y then
if LB > X or (LBr = X and UBp >Y) then B + F else
{ move last element of A into B;
A+ F;
Update X and Y;
if Y reduced then remove features F' € B with UBr > Y; }

}

Once a batch of features are processed by the above procedure, we do not
keep them in buffer except the candidate features in A and B.

3.4 Precise Computation

After filtering process in Step 2, the full information of remaining features for
solving WK is kept in A and B. Then, we apply this information to perform a
precise computation of W AP values using brute-force method.

3.5 Complexity of CWK

In Step 1, we read in the user specified cluster Cy and do some relevant compu-
tation, this step takes linear time with respect to the size of Cj.

In Step 2, we do the filtering process to read in and filter out features, the
main expenses here are to compute the lower and upper bounds of W AP for each
F, and to possibly insert a F' to A or B. These together run in O(}_;", |F;| +
nlog(|A| + |B])), here n is the number of total features.

Step 3 takes time O(}_ pe(aup) [Cl/F]) to compute WAP for the remaining
features.

Note that the brute-force algorithm runs in time O(>"7 , |C||F;|). Clearly,
in practice, the time complexity of the brute-force method is much higher than
that of CWK, because |A U B| is much smaller than n. This is confirmed by our
experiment results in Section 4.

3.6 Variations of CWK

We implement the algorithm CWK in three different modes in order to evaluate
the performance. The differences are the bounding shapes of a feature to be

taken while doing the filtering process. The first mode is denoted by CWK-R,
which uses only minimal bounding rectangles of features to compute the lower
and upper bounds of WAP(C, F'). An alternative mode to CWK-R is to use the
minimum bounding convex hulls instead of the minimal bounding rectangles, we
denote this mode by CWK-P. The third mode, denoted by CWK-RP, adopts a
multiple-filtering technique: 1) minimal bounding rectangles are firstly used to
obtain the ordered linked list A and B, and then, 2) the minimum bounding
convex hulls are computed for features stored in A and B to repeat Step 2 to
get two new ordered linked list A’ and B’ before processing Step 3.

In next section, we will report our experiment results regarding the perfor-
mance of the brute-force method, CWK-P, CWK-R, and CWK-RP.

4 Implementation and Experiment Results

The brute-force method and the three modes of CWK algorithm have been im-
plemented by C++ on a Pentium 1/200 with 128 MB of main memory, running
Window-NT 4.0. In our experiments, we evaluated the algorithms for efficiency
and scalability. Our performance evaluation is basically focused on Step 2 on-
wards, because the methods [3] of reading in clusters and features are not our
contribution. Therefore, in our experiment we record only the CPU time but
exclude I/0O costs.

In the experiments below, we adopt a common set of parameters: 1) a feature
has 30 edges on average, 2) a cluster has 200 points on average, and 3) the
features are grouped into 20 groups.

In our first experiment, we generate a database with 50 clusters and 5000
features, and k£ = 5. We implement our algorithm for each cluster. The exper-
iment results depicted in Figure 1 are the average time. Note the algorithm
CWK-P, CWK-R, CWK-RP are respective abbreviated to “P”, “R”, “R-P” in
the diagram.

From the first experiment, we can conclude that the brute-force method is
practically very slow. Another appearance is that CWK-P is slower than CWK-
R. Intuitively this is because that in CWK-P, the computation of a lower bound
for each feature is more expensive than that in CWK-R. We also observed that
CWK-RP appears the most efficient. This because that the second filtering phase
in CWK can still filter out some features; and thus the number of features left
for the precise computation is reduced. In short, we believe that CWK-P should
be intuitively and significantly slower than CWK-R and CWK-RP when the
number of features increases; this has been confirmed by the second experiment.

The second and third experiments have been undertaken through two di-
mensions. In the second experiment, we fix the £ to be 15 while the number
of features varies from 5000 to 50,000. Again, we run the 3 algorithms for each
cluster and record the average time. The results are depicted in Figure 2.

In the third experiment, we fix the number of features to be 50,000 while &
varies from 5 to 75. Each algorithm has been run against each cluster and the
average time is recorded. The experiment results are depicted in Figure 3.

1000

Brute-Force : x = 1
Pix=2
Rix=3

RPix=4

oy] i Algorithm Avgrage Run
Time(s)

Brute-force 105.055

execute time (s)
.
15
I

P 0.802
't] R 0.572
H H R-P 0.483
01 ‘ ‘ ‘ ‘
0 1 2 3 4 5
(a) histogram presentation (b) table presentation

Fig. 1. Average execution time for four algorithms

HFE Algorithm Average Run

Time (s)
P 0.975
5000 0.906
45 R-P 0.760
5.697
40 -
10000 R 5.244
35 R-P 5.097
14.988
sor 20000 R 13.881
©
=~ R-P 13.720
g 25
= P 24.375
2
3 20 30000 R 22.400
g
§
R-P 22.291
15 -
33.747
10 40000 r 31.140
R-P 30.922
sl
42.433
0 L L L L 50000 R 39.302
0 5000 10000 20000 30000 40000
Number of Features R-P 38.871
(a) graphic presentation (b) table presentation

Fig. 2. Average execution time for three algorithms by different DB sizes

These three experiments suggest that CWK-RP and CWK-R is faster than
CWK-P on average, and the performance of CWK-RP is faster than CWK-R.
From the second and third experiment results, we see that the choices of different
k values and different DB sizes will not change the above observation. The second
experiment also shows the scalability of algorithm CWK.

The three conducted experiments suggest that our algorithm is efficient and
scalable. Furthermore, we can see that although an application of convex hulls to

K Algorithm A‘_I’_?'nfge(:“"
P 42.163
5 R 38.556
45 i:
ps
- —— R-P 38.456
R e
44 - P 42.432
15 R 39.032
“r 1 R-P 38.871
- 43.413
@
S 42t
£ X 25 R 40.058
s
H x R-P 30871
gar T |
e P 43.764
or * so 40.784
P R-P 40,502
B T 1 P 44.264
N 41635
38 L I I L . 75 2
0 5 15 25 50 75
R-P
different k values 41.161
(a) graphic presentation (b) table presentation

Fig. 3. Average execution time for three algorithms by different K

the filtering procedures is more accurate than an application of minimal bound-
ing rectangles, it is more expensive to use directly. Thus, the best use of convex
hulls should follow an application of minimal bounding rectangles; that is, it is
better to apply the CWK-RP mode.

5 Conclusion and Remarks

In this paper, we investigated the weighted top k features problem regarding
average/aggregate proximity relationships. We presented an efficient algorithm
based on several new pruning conditions, as well as various different modes of the
algorithms. Our experiment results showed that the algorithm is quite efficient.

The problem WK, as well as the algorithm CWK, may be either generalized
or constrained according to various applications. The interested readers may
refer to our full paper [15] for details.

References

1. R. Agrawal and R. Srikant, Fast Algorithms for Mining Association Rules, Pro-
ceedings of the 20th VLDB Conference, 487-499, 1994.

2. M. Ankerst, B. Braunmuller, H.-P. Kriegel, T. Seidl, Improving Adaptable Simi-
larity Query Processing by Using Approximations, Proceedings of the 24th VLDB
Conference, 206-217, 1998.

3. W. G. Aref and H. Samet, Optimization Strategies for Spatial Query Processing,
Proceedings of the 17th VLDB Conference, 81-90, 1991.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. M. Ester, H.-P. Kriegel, J. Sander and X. Xu, A density-based algorithm for dis-

covering clusters in large spatial databases, Proceedings of the Second International
Conference on Data Mining KDD-96, 226-231, 1996.

. M. Este, H.-P. Kriegel, J. Sander, Spatial Data Mining: A Database Approach,

SSD’97, LNCS 1262, 47-65, 1997.

U. M. Fayyad, S. G. Djorgovski, and N. Weir, Automating the analysis and
cataloging of sky surveys, Advances in Knowledge Discovery and Data Mining,
AAAT/MIT Press, 1996.

U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. Advances in
Knowledge Discovery and Data Mining, AAAT/MIT Press, Menlo Park, CA, 1996.

. R. H. Guting, An Introduction to Spatial Database Systems, VLDB Journal, 3(4),

357-400, 1994.

J. Han, Y. Cai, and N. Cercone, Dynamic Generation and Refinement of Concept
Hierarchies for Knowledge Discovery in Databases, IEEE Trans. knowledge and
Data Engineering, 5, 29-40, 1993.

J. Han, K. Koperski, and N. Stefanovic, GeoMiner: A System Prototype for Spatial
Data Mining, Proceedings of 1997 ACM-SIGMOD International Conference on
Management, 553-556, 1997.

L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: an Introduction to
Cluster Analysis, John Wiley & Sons, 1990.

E. M. Knorr and R. T. Ng, Finding Aggregate Proximity Relationships and Com-
monalities in Spatial Data Mining, IEEE Transactions on Knowledge and Data
Engineering, 8(6), 884-897, 1996.

K. Koperski and J. Han, Discovery of Spatial Association Rules in Geographic In-
formation Databases, Advances in Spatial Databases, Proceeding of 4th Symposium
(SSD’95), 47-66, 1995.

K. Koperski, J. Han, and J. Adhikary, Mining Knowledge in Geographic Data, to
appear in Communications of ACM.

X. Lin, X. Zhou, C. Liu, and X. Zhou, Efficiently Computing Weighted Proximity
Relationships in Spatial Databases, (http://www.cse.unsw.edu.au/ Ixue), 2001.
H. Lu, J. Han, and B. C. Ooi, Knowledge Discovery in Large Spatial Databases,
Proceedings of Far East Workshop on Geographic Information Systems, 275-289,
1993.

N. Ng and J. Han, Efficient and Effective Clustering Method for Spatial Data
Mining, Proceeding of 1994 VLDB, 144-155, 1994.

J. S. Park, M.-S. Chen, and P. S. Yu, An Effective Hash-Based Algorithm for
Mining Association Rules, Proceedings of 1995 ACM SIGMOD, 175-186, 1995.

F. Preparata and M. Shamos, Computational Geometry: An Introduction, Springer-
Verlag, New York, 1985.

H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley,
1990.

G. Shaw and D. Wheeler, Statistical Techniques in Geographical Analysis, London,
David Fulton, 1994.

X. Xu, M. Ester, H.-P. Kriegel, Jorg Sander, A Distribution-Based Clustering
Algorithm for Mining in Large Spatial Databases, ICDE’98, 324-331, 1998.

T. Zhang, R. Ramakrishnan and M. Livny, BIRCH: an efficient data clustering
method for very large databases, Proceeding of 1996 ACM-SIGMOD International
Conference of Management of Data, 103-114, 1996.

This article was processed using the I¥TEX macro package with LLNCS style

