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iently Computing Weighted ProximityRelationships in Spatial DatabasesXuemin Lin1 Xiaomei Zhou1 Chengfei Liu2 Xiaofang Zhou31 S
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ien
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se.unsw.edu.au2 S
hool of Computer and Information S
ien
e, University of South AustraliaAdelaide, SA 5095, Australia. Liu�
s.unisa.edu.au3 Department of Computer S
ien
e and Ele
tri
al EngineeringUniversity of Queensland, QLD 4072, Australia. zxf�
see.uq.edu.auAbstra
t. Spatial data mining re
ently emerges from a number of realappli
ations, su
h as real-estate marketing, urban planning, weather fore-
asting, medi
al image analysis, road traÆ
 a

ident analysis, et
. It de-mands for eÆ
ient solutions for many new, expensive, and 
ompli
atedproblems. In this paper, we investigate the problem of evaluating the topk distinguished \features" for a \
luster" based on weighted proximityrelationships between the 
luster and features. We measure proximityin an average fashion to address possible nonuniform data distributionin a 
luster. Combining a standard multi-step paradigm with new lowerand upper proximity bounds, we presented an eÆ
ient algorithm to solvethe problem. The algorithm is implemented in several di�erent modes.Our experiment results not only give a 
omparison among them but alsoillustrate the eÆ
ien
y of the algorithm.Keywords: Spatial query pro
essing and data mining.1 Introdu
tionSpatial data mining is to dis
over and understand non-trivial, impli
it, and pre-viously unknown knowledge in large spatial databases. It has a wide range of ap-pli
ations, su
h as demographi
 analysis, weather pattern analysis, urban plan-ning, transportation management, et
. While pro
essing of typi
al spatial queries(su
h as joins, nearest neighbouring, KNN, and map overlays) has been re
eiveda great deal of attention for years [2, 3, 20℄, spatial data mining, viewed as ad-van
ed spatial queries, demands for eÆ
ient solutions for many newly proposed,expensive, 
ompli
ated, and sometimes ad-ho
 spatial queries.Inspired by a su

ess in advan
ed spatial query pro
essing te
hniques [2, 3, 8,20℄, relational data mining [1, 18℄, ma
hine learning [7℄, 
omputational geometry[19℄, and statisti
s analysis [11, 21℄, many resear
h results and system prototypesin spatial data mining have been re
ently reported [2, 4, 5, 10, 12, 14, 16℄. Theexisting resear
h not only tends to provide system solutions but also 
overs quitea number of spe
ial purpose solutions to ad-ho
 mining tasks. The results in
ludeeÆ
iently 
omputing spatial asso
iation rules [13℄, spatial data 
lassi�
ation and



generalization [10, 14, 16℄, spatial predi
tion and trend analysis [5℄, 
lusteringand 
luster analysis [4, 12, 17, 23℄, mining in image and raster databases [6℄, et
.Clustering has been shown one of the most useful tools to partition and
ategorize spatial data into 
lusters for the purpose of knowledge dis
overy. Anumber of eÆ
ient algorithms [4, 17, 22, 23℄ have been proposed. While mostexisting 
lustering algorithms are e�e
tive to 
onstru
t \
lusters", they are in-e�e
tive to provide the reasons why the 
lusters are there spatially. Moreover,in many appli
ations 
lusters are naturally existing; for example, a 
luster 
ouldbe a residential area. Therefore, it is equally important, if not more, to �nd outspatial properties of 
lusters based on their surrounding \features". The prox-imity is one of the most 
ommon measurements to represent the relationshipbetween 
lusters and features. In [12℄, the problem of 
omputing k 
losest fea-tures surrounding a set (
luster) of points in two dimensional spa
e based onaverage/aggregate proximity relationships was investigated.The problem of 
omputing k 
losest features has a number of useful real appli-
ations. For instan
e, in a spatial database for the real-estate information, a setof points represents a residential area where ea
h point represents a house/landpar
el. A polygon 
orresponds to a ve
tor representation of feature, su
h as alake, golf 
ourse, s
hool, motor way, et
. In this appli
ation, buyers or develop-ers may want to know why some residential area is so expensive. Consequentlythey may want to know the k 
losest features. As pointed in [12℄, in su
h anappli
ation it is better to measure the proximity relationship in an average fash-ion to address a possible nonuniform data distribution. Furthermore, in su
h anappli
ation it may be more important to know that a residential area is only5 kilometres away from the downtown area rather than 500 meters away froma swimming pool. This suggests that we should put weights when evaluate fea-tures, so that the obtained top k features are also based on their importan
e.In this paper, we investigate the problem of 
omputing the weighted k 
losestfeatures (WK); that is, ea
h feature is asso
iated with a weight. We will formallyde�ne the WK problem in the next se
tion.In WK, we assume that the \proximity value" between a 
luster and featurehas not been pre-
omputed, nor stored in the database. A naive way to solveWK is to �rst pre
isely 
ompute the proximity value between ea
h feature and agiven 
luster, and then to solve the WK problem. However, in pra
ti
e there maybe many features far from being part of solution to WK; and thus they shouldbe ruled out by a fast �ltering te
hnique. The �ltering te
hnique developed in[12℄ for unweighted problem is not quite suitable to WK, be
ause it spe
i�
allydesigned to solve unweighted problem. Motivated by these, our algorithm adoptsa standard multi-step te
hnique [2, 12, 13℄ in 
ombining with novel and pow-erful pruning 
onditions to �lter out uninvolved features. The algorithm hasbeen implemented in several di�erent modes for performan
e evaluation. Ourexperiments 
learly demonstrate the eÆ
ien
y of the algorithm.The rest of the paper is organized as follows. In se
tion 2, we present a pre
isede�nition of WK as well as a brief introdu
tion of an adopted spatial databasear
hite
ture. Se
tion 3 presents our algorithm for solving WK. Se
tion 4 reports



our experimental results. In se
tion 5, a dis
ussion is presented regarding variousmodi�
ations of our algorithm; this will be together with the 
on
lusions. Note,due to the spa
e limitation we do not provide the proofs of the theorems in thispaper; the interested readers may refer to a long version [15℄ of the paper forthese.2 PreliminaryIn this se
tion we pre
isely de�ne the WK problem. A feature F is a simpleand 
losed polygon [19℄ in the 2-dimensional spa
e. A set C of points in thetwo dimensional spa
e is 
alled 
luster for notation simpli
ity. Following [12℄,we assume that in WK a 
luster is always outside [19℄ a feature. Note thatthis assumption may support many real appli
ations. For instan
e, in real-estatedata, a 
luster represents a set of land par
els, and a feature represents a man-made or natural pla
e of interest, su
h as lake, shopping 
enter, s
hool, park,and entertainment 
enter. Su
h data 
an be found in many ele
troni
 maps in adigital library.To eÆ
iently a

ess large spatial data (usually tera-bytes), in this paper weadopt an extended-relational and a SAND (spatial-and-non-spatial database)ar
hite
ture [3℄; that is, a spatial database 
onsisting of a set of spatial obje
tsand a relational database des
ribing non-spatial properties of these obje
ts.Below we formally de�ne WK. In WK, the input 
onsists of: 1) a 
luster C0;2) a set � = f�j : 1 � j � mg of groups of features (i.e., ea
h �j is a group offeatures); and 3) k to indi
ate the number of features to be found.Given a feature F and a point p outside F , the length of the a
tual (workingor driving) shortest path from p to F is too expensive to 
ompute in the presen
eof tens of thousands of di�erent roads. In WK, we use the shortest Eu
lideandistan
e from p to a point in the boundary of F , denoted by d(p; F ), to re
e
t thegeographi
 proximity relationship between p and F . We believe that on average,the length of an a
tual shortest path 
an be re
e
ted by d(p; F ). We 
all d(p; F )the distan
e between p and F . Note that F may degenerate to a line or a point.Moreover, for the purpose of 
omputing lower and upper proximity bounds inSe
tion 3, the de�nition of d(p; F ) should be extended to 
over the 
ase when pis inside or on the boundary of F ; that is, d(p; F ) = 0 if p is inside of or on theboundary of F .To address a possible arbitrary distribution of the points in C, we use thefollowing average proximity value to quantitatively model the proximity relation-ship between F and C: AP (C;F ) = 1jCjXp2C d(p; F ):As mentioned earlier, in WK we will rank the importan
e of a feature by apositive value. More important a feature is, smaller its weight is. A weight 
anbe assigned to a group of features by either a user or the system default. A set



fwj : 1 � j � mg of positive values is also part of the input of WK. WK 
annow be modelled to �nd the k features in Pmj=1 �j su
h that those k featureslead to the k smallest values of the following fun
tion:WAP (C0; F ) =WFAP (C0; F ) where F 2Pmj=1 �j :Here, WF is the weight of F ; that is, WF = wj for F 2 �j . Note that in [12℄, theproximity between a 
luster and a feature is measured in an aggregate fashion;that is, Pp2C d(p; F ) is used there instead of using 1jCjPp2C d(p; F ). However,it should be 
lear that to 
ompute the k 
losest features to a given 
luster thesetwo measurements are equivalent. This means that the top k feature problem in[12℄ is a spe
ial 
ase of WK where all the weights are 1.3 Algorithms for Solving WKIn this se
tion, we present an eÆ
ient algorithm for solvingWK. The algorithm isdenoted by CWK, whi
h stands forComputing theWeightedK 
losest features.An immediate way (brute-for
e) to solve WK is to 1) 
ompute WAP (C0; F )for ea
h pair of a given 
luster C0 and a feature F , and then to 2) 
omputethe k 
losest features based on their WAP values. Note that WAP (C0; F ) 
anbe easily 
omputed in O(jC0jjF j) a

ording to the de�nition of WAP (C;F ).Consequently, the brute-for
e approa
h runs in time O(jC0jPmj=1PF2�j jF j).Pra
ti
ally, there may be many features involved in the 
omputation; ea
h fea-ture may have many edges; and the given 
luster may have many points. Thesemake the brute-for
e approa
h probably 
omputational prohibitive in pra
ti
e.Our experiment results in Se
tion 4.3 
on�rm this.One possible way to resolve this problem is to adopt a multi-step paradigm[2, 12, 13℄. First, we use a �ltering step to �lter out the features, and then dopre
ise 
omputation of WAP values for those 
andidate features only. A simpleand very e�e
tive te
hnique was proposed in [12℄ to solve WK with all weightequal to 1: draw a 
ir
le en
ompassing the 
luster and then keep the features withan interse
tion to the 
ir
le as the 
andidates.If we want to apply the above te
hnique generally to WK with di�erentweights, we may have to draw di�erent 
ir
les for di�erent groups of featuresdue to di�erent weights. Be
ause for ea
h group of features we have to keep atleast k features, there may be too many 
andidates left and the �lter may notbe powerful enough,In this paper, we propose a �ltering te
hnique based on the lower and upperbound for WAP values. Instead of 
omputing the a
tual value ofWAP (C0; F ) inquadrati
 time O(jCjjF j), we may 
ompute a lower bound and an upper boundfor WAP (C0; F ) in a linear time O(jF j) with respe
t to the size of F . By thesebounds, for the given 
luster C0, we 
an rule out the features, whi
h are de�nitelynot 
losest to C0 in a weighted sense; Thus we do not have to pre
isely 
omputethe weighted average proximity values between these eliminated features andC0. This is the basi
 idea of our algorithm. In our algorithm CWK, we have



not integrated our algorithm into a parti
ular spatial index, su
h as R-trees,R+-trees, et
, due to the following reasons.{ There may be no spatial index built.{ The WK problem may involve many features from di�erent tables/ele
troni
themati
 maps; and thus, spatial index built for ea
h themati
 map may bedi�erent. This brings another diÆ
ulty when making use of spatial indi
es.{ A feature or a 
luster, whi
h is quali�ed in WK, may be only a part of astored spatial obje
t; for instan
e, a user may be interested only in 
ertainpart of a park. This makes a possible existing index based on the storedspatial obje
ts not quite appli
able.{ The paper [12℄ indi
ates the existing spatial indexing te
hniques do not ne
-essarily support well the 
omputation of aggregate distan
es; the argumentshould be also applied to average distan
e 
omputation.The algorithm CWK 
onsists of the following 3 steps:Step 1: Read the 
luster C0 into bu�er.Step 2: Read features bat
h by bat
h into bu�er, 
ompute lower and upperbounds of WAP (C0; F ) for the given 
luster C0. Then determine whetheror not F should be kept for the 
omputation of WAP (C0; F ).Step 3: Apply the above brute-for
e method to the remaining features to solveproblem WK.In the next several subse
tions we detail the algorithm step by step. Clearly,a su

ess of the algorithm CWK largely relies on how good the lower and upperbounds ofWAP are. The goodness of lower and upper bounds means two things:1) the bounds should be reasonably tight, and 2) the 
orresponding 
omputationshould be fast. We �rst present the lower and upper bounds.Note that for presentation simpli
ity, the algorithms presented in the paperare restri
ted to the 
ase when features and 
lusters quali�ed in WK are storedspatial obje
ts in the database. However, they 
an be immediately extended to
over the 
ase when a feature or a 
luster is a part of a stored obje
t.3.1 Lower and Upper Bounds for Average ProximityIn this subse
tion, we re
all �rst some useful notation. The bary
enter (
entroid)of a 
luster C is denoted by b(C). A 
onvex [19℄ polygon en
ompassing a feature Fis 
alled a bounding 
onvex polygon of F . The smallest bounding 
onvex polygonof F is 
alled the 
onvex hull [19℄ of F and is denoted by PF . An isotheti
 [19℄re
tangle is orthogonal to the 
oordinate axis. The minimum bounding re
tangleof F refers to the minimum isotheti
 bounding re
tangle of F and is denoted byRF .Given two minimum bounding re
tangles RC and RF respe
tively for a 
lus-ter C and a feature F , an immediate idea is to use the shortest distan
e and thelongest distan
e between RC and RF to respe
tively represent a lower bound andan upper bound of AP (C;F ). However, this immediate idea has two problems.



The �rst problem is that when two re
tangles interse
t with ea
h other (notethat in this 
ase C and F do not ne
essarily have an interse
tion), the short-est and longest distan
es between RC and RF are not well de�ned. The se
ondproblem is that the bounds may not be very tight even if the two re
tangles donot interse
t. These also happen similarly for 
onvex hulls. Below, we presentnew and tighter bounds.Our lower bound 
omputation is based on the following Lemma.Lemma1. PKi=1px2i + y2i �q(PKi=1 xi)2 + (PKi=1 yi)2Theorem2. Suppose that C is a 
luster, F is a feature, and P is either the 
on-vex hull or the minimum bounding re
tangle of F . Then, AP (C;F ) � d(b(C); P );in other words d(b(C); P ) is a lower bound of AP (C;F ).Clearly, the above lower bound is tighter than the shortest distan
e betweentwo bounding re
tangles.Suppose that p is an arbitrary point. For a 
luster, we use �(p; C) to denotethe maximum distan
e between p to a point in C. Below is an upper bound ofAP .Theorem3. Suppose that p is an arbitrary point, C is a 
luster, and F is afeature. Then AP (C;F ) � d(p; F ) + �(p; C).It is 
lear the right hand side in the inequality of Theorem 3 
an be used asan upper bound of AP ; and 
an be 
omputed in time O(jF j) on
e the 
ompu-tation of �(p; C) is done. We believe that this bound may be tighter than thelongest distan
e between the minimum bounding re
tangles. However, we 
annotgenerally prove this be
ause the tightness of the upper bound depends on the
hoi
e of p. In our algorithm, we will 
hoose the 
entroid of a 
luster C in theupper bound 
omputation sin
e it has to be used to obtain a lower bound. Notethat generally d(b(C); PF ) and d(b(C); F ) respe
tively in the lower and upperbounds 
annot repla
e ea
h other if F is not a 
onvex polygon.3.2 Read in the relevant 
lusterIn Step 1, we �rst read in the 
luster C0, whi
h are spe
i�ed by a user, into bu�er.Then, we 
ompute the 
entroid b(C0) and the maximal distan
e �(b(C0); C0).Clearly, this step takes linear time with respe
t to the size of C0.3.3 Read in and Filter out FeaturesThis subse
tion presents Step 2. Consider that the total size of features to bepro
essed may be too large to �t in bu�er simultaneously. Features should beread into bu�er bat
h by bat
h.Note that in WK, our primary goal is to make a 
andidate set as 
lose aspossible to the a
tual solution; this means a small set of 
andidates will be



expe
ted to be left in the main memory after �ltering step. Therefore, we maystore the detail of the 
andidates in the main memory for a further pro
essing.Parti
ularly, the �ltering step developed in CWK is to:1. initialize the 
andidate set by assigning the �rst k features, and then,2. examine the rest of the features one by one to determine whether or notthey are 
andidates. In 
ase that a new 
andidate is added, we should also
he
k whether or not 
ertain features in
luded in the 
andidate set shouldbe removed.The following lemma 
an be immediately veri�ed.Lemma4. For a 
luster C and a feature F with weight WF ,WF d(b(C); PF ) �WAP (C;F ) �WF (d(p; F ) + �(p; C)):Lemma 4 means that WF d(b(C); PF ) is the lower bound of WAP (C;F ) de-noted by LBF , while WF (d(p; F ) + �(p; C)) is the upper bound of WAP (C;F )denoted by UBF .Lemma5. Suppose � is a set of 
andidate features, Y is the k'th smallestUBF for every F 2 �. Then, F 0 is a feature in the solution of WK only ifWAP (C;F 0) � Y . Thus, LBF 0 � Y .Suppose that a new feature F is pro
essed, Lemma 5 says that if LBF forF is greater than Y , than F should not be 
onsidered as part of the solution ofWK.Consider the situation that a new F is added to � and the Y is updated(
hanged smaller). Then, a feature F 0 in � may no longer be a 
andidate ifLBF 0 > Y ; and thus we have to remove F 0 from �. A naive way to do this is tos
an the whole � to determine whether or not there is feature to be removed.To speed up this pro
ess, we 
an divided � into two parts A and B, where Bis the set of 
andidates to be removed. We make A and B two ordered linkedlists to store the 
andidates, let A has the �xed length of k, and use X to storethe 
urrent largest lower bound of F in A. Ea
h element F in A or B stores theidenti�er FID, LBF and UBF , and the spatial des
ription of F . A and B areinitially set to empty. The elements in A and B are sorted on the lexi
ographi
order of (LBF ; UBF ) for ea
h F .Spe
i�
ally, to pro
ess a F , CWK �rst 
omputes the values of LBF and UBFforWAP (C;F ). Then, add the �rst k features to A a

ording to a lexi
ographi
order of (LBF ; UBF ). For the rest of the features, if LBF � Y , it will be a
andidate and kept in A or B. More spe
i�
ally, F will be added to A in aproper position if (LBF ; UBF ) < (LBF 0 ; UBF 0), where F 0 is the last elementof A; and then F 0 will be moved to B. When (LBF ; UBF ) � (LBF 0 ; UBF 0), Fwill be added to B. On
e a new F is added to the A or B, X and Y should beupdated. Ea
h time after Y is redu
ed, we also need to 
he
k B to remove thosefeatures whose lower bounds are bigger than Y . Below is a pre
ise des
riptionof Step 2.



Step 2 in CWK:A ;; B  ;;Read in features;for the �rst k features in � dof 
ompute lower and upper bounds LBF and UBF for ea
h feature F ;keep them in A and 
ompute X and Y ; g� = � - f the �rst k features in � g;for ea
h F 2 � dof 
ompute LBF and UBF ;if LBF < Y thenif LBF > X or (LBF = X and UBF � Y ) then B  F elsef move last element of A into B;A F ;Update X and Y ;if Y redu
ed then remove features F 2 B with UBF > Y ; ggOn
e a bat
h of features are pro
essed by the above pro
edure, we do notkeep them in bu�er ex
ept the 
andidate features in A and B.3.4 Pre
ise ComputationAfter �ltering pro
ess in Step 2, the full information of remaining features forsolving WK is kept in A and B. Then, we apply this information to perform apre
ise 
omputation of WAP values using brute-for
e method.3.5 Complexity of CWKIn Step 1, we read in the user spe
i�ed 
luster C0 and do some relevant 
ompu-tation, this step takes linear time with respe
t to the size of C0.In Step 2, we do the �ltering pro
ess to read in and �lter out features, themain expenses here are to 
ompute the lower and upper bounds ofWAP for ea
hF , and to possibly insert a F to A or B. These together run in O(Pni=1 jFij +n log(jAj+ jBj)), here n is the number of total features.Step 3 takes time O(PF2(A[B) jCjjF j) to 
ompute WAP for the remainingfeatures.Note that the brute-for
e algorithm runs in time O(Pni=1 jCjjFij). Clearly,in pra
ti
e, the time 
omplexity of the brute-for
e method is mu
h higher thanthat of CWK, be
ause jA[Bj is mu
h smaller than n. This is 
on�rmed by ourexperiment results in Se
tion 4.3.6 Variations of CWKWe implement the algorithm CWK in three di�erent modes in order to evaluatethe performan
e. The di�eren
es are the bounding shapes of a feature to be



taken while doing the �ltering pro
ess. The �rst mode is denoted by CWK-R,whi
h uses only minimal bounding re
tangles of features to 
ompute the lowerand upper bounds of WAP (C;F ). An alternative mode to CWK-R is to use theminimum bounding 
onvex hulls instead of the minimal bounding re
tangles, wedenote this mode by CWK-P. The third mode, denoted by CWK-RP, adopts amultiple-�ltering te
hnique: 1) minimal bounding re
tangles are �rstly used toobtain the ordered linked list A and B, and then, 2) the minimum bounding
onvex hulls are 
omputed for features stored in A and B to repeat Step 2 toget two new ordered linked list A0 and B0 before pro
essing Step 3.In next se
tion, we will report our experiment results regarding the perfor-man
e of the brute-for
e method, CWK-P, CWK-R, and CWK-RP.4 Implementation and Experiment ResultsThe brute-for
e method and the three modes of CWK algorithm have been im-plemented by C++ on a Pentium I/200 with 128 MB of main memory, runningWindow-NT 4.0. In our experiments, we evaluated the algorithms for eÆ
ien
yand s
alability. Our performan
e evaluation is basi
ally fo
used on Step 2 on-wards, be
ause the methods [3℄ of reading in 
lusters and features are not our
ontribution. Therefore, in our experiment we re
ord only the CPU time butex
lude I/O 
osts.In the experiments below, we adopt a 
ommon set of parameters: 1) a featurehas 30 edges on average, 2) a 
luster has 200 points on average, and 3) thefeatures are grouped into 20 groups.In our �rst experiment, we generate a database with 50 
lusters and 5000features, and k = 5. We implement our algorithm for ea
h 
luster. The exper-iment results depi
ted in Figure 1 are the average time. Note the algorithmCWK-P, CWK-R, CWK-RP are respe
tive abbreviated to \P", \R", \R-P" inthe diagram.From the �rst experiment, we 
an 
on
lude that the brute-for
e method ispra
ti
ally very slow. Another appearan
e is that CWK-P is slower than CWK-R. Intuitively this is be
ause that in CWK-P, the 
omputation of a lower boundfor ea
h feature is more expensive than that in CWK-R. We also observed thatCWK-RP appears the most eÆ
ient. This be
ause that the se
ond �ltering phasein CWK 
an still �lter out some features; and thus the number of features leftfor the pre
ise 
omputation is redu
ed. In short, we believe that CWK-P shouldbe intuitively and signi�
antly slower than CWK-R and CWK-RP when thenumber of features in
reases; this has been 
on�rmed by the se
ond experiment.The se
ond and third experiments have been undertaken through two di-mensions. In the se
ond experiment, we �x the k to be 15 while the numberof features varies from 5000 to 50,000. Again, we run the 3 algorithms for ea
h
luster and re
ord the average time. The results are depi
ted in Figure 2.In the third experiment, we �x the number of features to be 50; 000 while kvaries from 5 to 75. Ea
h algorithm has been run against ea
h 
luster and theaverage time is re
orded. The experiment results are depi
ted in Figure 3.
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e of CWK-RP is faster than CWK-R.From the se
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es of di�erentk values and di�erent DB sizes will not 
hange the above observation. The se
ondexperiment also shows the s
alability of algorithm CWK.The three 
ondu
ted experiments suggest that our algorithm is eÆ
ient ands
alable. Furthermore, we 
an see that although an appli
ation of 
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