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EÆiently Computing Weighted ProximityRelationships in Spatial DatabasesXuemin Lin1 Xiaomei Zhou1 Chengfei Liu2 Xiaofang Zhou31 Shool of Computer Siene and Engineering, University of New South WalesSydney, NSW 2052, Australia. lxue�se.unsw.edu.au2 Shool of Computer and Information Siene, University of South AustraliaAdelaide, SA 5095, Australia. Liu�s.unisa.edu.au3 Department of Computer Siene and Eletrial EngineeringUniversity of Queensland, QLD 4072, Australia. zxf�see.uq.edu.auAbstrat. Spatial data mining reently emerges from a number of realappliations, suh as real-estate marketing, urban planning, weather fore-asting, medial image analysis, road traÆ aident analysis, et. It de-mands for eÆient solutions for many new, expensive, and ompliatedproblems. In this paper, we investigate the problem of evaluating the topk distinguished \features" for a \luster" based on weighted proximityrelationships between the luster and features. We measure proximityin an average fashion to address possible nonuniform data distributionin a luster. Combining a standard multi-step paradigm with new lowerand upper proximity bounds, we presented an eÆient algorithm to solvethe problem. The algorithm is implemented in several di�erent modes.Our experiment results not only give a omparison among them but alsoillustrate the eÆieny of the algorithm.Keywords: Spatial query proessing and data mining.1 IntrodutionSpatial data mining is to disover and understand non-trivial, impliit, and pre-viously unknown knowledge in large spatial databases. It has a wide range of ap-pliations, suh as demographi analysis, weather pattern analysis, urban plan-ning, transportation management, et. While proessing of typial spatial queries(suh as joins, nearest neighbouring, KNN, and map overlays) has been reeiveda great deal of attention for years [2, 3, 20℄, spatial data mining, viewed as ad-vaned spatial queries, demands for eÆient solutions for many newly proposed,expensive, ompliated, and sometimes ad-ho spatial queries.Inspired by a suess in advaned spatial query proessing tehniques [2, 3, 8,20℄, relational data mining [1, 18℄, mahine learning [7℄, omputational geometry[19℄, and statistis analysis [11, 21℄, many researh results and system prototypesin spatial data mining have been reently reported [2, 4, 5, 10, 12, 14, 16℄. Theexisting researh not only tends to provide system solutions but also overs quitea number of speial purpose solutions to ad-ho mining tasks. The results inludeeÆiently omputing spatial assoiation rules [13℄, spatial data lassi�ation and



generalization [10, 14, 16℄, spatial predition and trend analysis [5℄, lusteringand luster analysis [4, 12, 17, 23℄, mining in image and raster databases [6℄, et.Clustering has been shown one of the most useful tools to partition andategorize spatial data into lusters for the purpose of knowledge disovery. Anumber of eÆient algorithms [4, 17, 22, 23℄ have been proposed. While mostexisting lustering algorithms are e�etive to onstrut \lusters", they are in-e�etive to provide the reasons why the lusters are there spatially. Moreover,in many appliations lusters are naturally existing; for example, a luster ouldbe a residential area. Therefore, it is equally important, if not more, to �nd outspatial properties of lusters based on their surrounding \features". The prox-imity is one of the most ommon measurements to represent the relationshipbetween lusters and features. In [12℄, the problem of omputing k losest fea-tures surrounding a set (luster) of points in two dimensional spae based onaverage/aggregate proximity relationships was investigated.The problem of omputing k losest features has a number of useful real appli-ations. For instane, in a spatial database for the real-estate information, a setof points represents a residential area where eah point represents a house/landparel. A polygon orresponds to a vetor representation of feature, suh as alake, golf ourse, shool, motor way, et. In this appliation, buyers or develop-ers may want to know why some residential area is so expensive. Consequentlythey may want to know the k losest features. As pointed in [12℄, in suh anappliation it is better to measure the proximity relationship in an average fash-ion to address a possible nonuniform data distribution. Furthermore, in suh anappliation it may be more important to know that a residential area is only5 kilometres away from the downtown area rather than 500 meters away froma swimming pool. This suggests that we should put weights when evaluate fea-tures, so that the obtained top k features are also based on their importane.In this paper, we investigate the problem of omputing the weighted k losestfeatures (WK); that is, eah feature is assoiated with a weight. We will formallyde�ne the WK problem in the next setion.In WK, we assume that the \proximity value" between a luster and featurehas not been pre-omputed, nor stored in the database. A naive way to solveWK is to �rst preisely ompute the proximity value between eah feature and agiven luster, and then to solve the WK problem. However, in pratie there maybe many features far from being part of solution to WK; and thus they shouldbe ruled out by a fast �ltering tehnique. The �ltering tehnique developed in[12℄ for unweighted problem is not quite suitable to WK, beause it spei�allydesigned to solve unweighted problem. Motivated by these, our algorithm adoptsa standard multi-step tehnique [2, 12, 13℄ in ombining with novel and pow-erful pruning onditions to �lter out uninvolved features. The algorithm hasbeen implemented in several di�erent modes for performane evaluation. Ourexperiments learly demonstrate the eÆieny of the algorithm.The rest of the paper is organized as follows. In setion 2, we present a preisede�nition of WK as well as a brief introdution of an adopted spatial databasearhiteture. Setion 3 presents our algorithm for solving WK. Setion 4 reports



our experimental results. In setion 5, a disussion is presented regarding variousmodi�ations of our algorithm; this will be together with the onlusions. Note,due to the spae limitation we do not provide the proofs of the theorems in thispaper; the interested readers may refer to a long version [15℄ of the paper forthese.2 PreliminaryIn this setion we preisely de�ne the WK problem. A feature F is a simpleand losed polygon [19℄ in the 2-dimensional spae. A set C of points in thetwo dimensional spae is alled luster for notation simpliity. Following [12℄,we assume that in WK a luster is always outside [19℄ a feature. Note thatthis assumption may support many real appliations. For instane, in real-estatedata, a luster represents a set of land parels, and a feature represents a man-made or natural plae of interest, suh as lake, shopping enter, shool, park,and entertainment enter. Suh data an be found in many eletroni maps in adigital library.To eÆiently aess large spatial data (usually tera-bytes), in this paper weadopt an extended-relational and a SAND (spatial-and-non-spatial database)arhiteture [3℄; that is, a spatial database onsisting of a set of spatial objetsand a relational database desribing non-spatial properties of these objets.Below we formally de�ne WK. In WK, the input onsists of: 1) a luster C0;2) a set � = f�j : 1 � j � mg of groups of features (i.e., eah �j is a group offeatures); and 3) k to indiate the number of features to be found.Given a feature F and a point p outside F , the length of the atual (workingor driving) shortest path from p to F is too expensive to ompute in the preseneof tens of thousands of di�erent roads. In WK, we use the shortest Eulideandistane from p to a point in the boundary of F , denoted by d(p; F ), to reet thegeographi proximity relationship between p and F . We believe that on average,the length of an atual shortest path an be reeted by d(p; F ). We all d(p; F )the distane between p and F . Note that F may degenerate to a line or a point.Moreover, for the purpose of omputing lower and upper proximity bounds inSetion 3, the de�nition of d(p; F ) should be extended to over the ase when pis inside or on the boundary of F ; that is, d(p; F ) = 0 if p is inside of or on theboundary of F .To address a possible arbitrary distribution of the points in C, we use thefollowing average proximity value to quantitatively model the proximity relation-ship between F and C: AP (C;F ) = 1jCjXp2C d(p; F ):As mentioned earlier, in WK we will rank the importane of a feature by apositive value. More important a feature is, smaller its weight is. A weight anbe assigned to a group of features by either a user or the system default. A set



fwj : 1 � j � mg of positive values is also part of the input of WK. WK annow be modelled to �nd the k features in Pmj=1 �j suh that those k featureslead to the k smallest values of the following funtion:WAP (C0; F ) =WFAP (C0; F ) where F 2Pmj=1 �j :Here, WF is the weight of F ; that is, WF = wj for F 2 �j . Note that in [12℄, theproximity between a luster and a feature is measured in an aggregate fashion;that is, Pp2C d(p; F ) is used there instead of using 1jCjPp2C d(p; F ). However,it should be lear that to ompute the k losest features to a given luster thesetwo measurements are equivalent. This means that the top k feature problem in[12℄ is a speial ase of WK where all the weights are 1.3 Algorithms for Solving WKIn this setion, we present an eÆient algorithm for solvingWK. The algorithm isdenoted by CWK, whih stands forComputing theWeightedK losest features.An immediate way (brute-fore) to solve WK is to 1) ompute WAP (C0; F )for eah pair of a given luster C0 and a feature F , and then to 2) omputethe k losest features based on their WAP values. Note that WAP (C0; F ) anbe easily omputed in O(jC0jjF j) aording to the de�nition of WAP (C;F ).Consequently, the brute-fore approah runs in time O(jC0jPmj=1PF2�j jF j).Pratially, there may be many features involved in the omputation; eah fea-ture may have many edges; and the given luster may have many points. Thesemake the brute-fore approah probably omputational prohibitive in pratie.Our experiment results in Setion 4.3 on�rm this.One possible way to resolve this problem is to adopt a multi-step paradigm[2, 12, 13℄. First, we use a �ltering step to �lter out the features, and then dopreise omputation of WAP values for those andidate features only. A simpleand very e�etive tehnique was proposed in [12℄ to solve WK with all weightequal to 1: draw a irle enompassing the luster and then keep the features withan intersetion to the irle as the andidates.If we want to apply the above tehnique generally to WK with di�erentweights, we may have to draw di�erent irles for di�erent groups of featuresdue to di�erent weights. Beause for eah group of features we have to keep atleast k features, there may be too many andidates left and the �lter may notbe powerful enough,In this paper, we propose a �ltering tehnique based on the lower and upperbound for WAP values. Instead of omputing the atual value ofWAP (C0; F ) inquadrati time O(jCjjF j), we may ompute a lower bound and an upper boundfor WAP (C0; F ) in a linear time O(jF j) with respet to the size of F . By thesebounds, for the given luster C0, we an rule out the features, whih are de�nitelynot losest to C0 in a weighted sense; Thus we do not have to preisely omputethe weighted average proximity values between these eliminated features andC0. This is the basi idea of our algorithm. In our algorithm CWK, we have



not integrated our algorithm into a partiular spatial index, suh as R-trees,R+-trees, et, due to the following reasons.{ There may be no spatial index built.{ The WK problem may involve many features from di�erent tables/eletronithemati maps; and thus, spatial index built for eah themati map may bedi�erent. This brings another diÆulty when making use of spatial indies.{ A feature or a luster, whih is quali�ed in WK, may be only a part of astored spatial objet; for instane, a user may be interested only in ertainpart of a park. This makes a possible existing index based on the storedspatial objets not quite appliable.{ The paper [12℄ indiates the existing spatial indexing tehniques do not ne-essarily support well the omputation of aggregate distanes; the argumentshould be also applied to average distane omputation.The algorithm CWK onsists of the following 3 steps:Step 1: Read the luster C0 into bu�er.Step 2: Read features bath by bath into bu�er, ompute lower and upperbounds of WAP (C0; F ) for the given luster C0. Then determine whetheror not F should be kept for the omputation of WAP (C0; F ).Step 3: Apply the above brute-fore method to the remaining features to solveproblem WK.In the next several subsetions we detail the algorithm step by step. Clearly,a suess of the algorithm CWK largely relies on how good the lower and upperbounds ofWAP are. The goodness of lower and upper bounds means two things:1) the bounds should be reasonably tight, and 2) the orresponding omputationshould be fast. We �rst present the lower and upper bounds.Note that for presentation simpliity, the algorithms presented in the paperare restrited to the ase when features and lusters quali�ed in WK are storedspatial objets in the database. However, they an be immediately extended toover the ase when a feature or a luster is a part of a stored objet.3.1 Lower and Upper Bounds for Average ProximityIn this subsetion, we reall �rst some useful notation. The baryenter (entroid)of a luster C is denoted by b(C). A onvex [19℄ polygon enompassing a feature Fis alled a bounding onvex polygon of F . The smallest bounding onvex polygonof F is alled the onvex hull [19℄ of F and is denoted by PF . An isotheti [19℄retangle is orthogonal to the oordinate axis. The minimum bounding retangleof F refers to the minimum isotheti bounding retangle of F and is denoted byRF .Given two minimum bounding retangles RC and RF respetively for a lus-ter C and a feature F , an immediate idea is to use the shortest distane and thelongest distane between RC and RF to respetively represent a lower bound andan upper bound of AP (C;F ). However, this immediate idea has two problems.



The �rst problem is that when two retangles interset with eah other (notethat in this ase C and F do not neessarily have an intersetion), the short-est and longest distanes between RC and RF are not well de�ned. The seondproblem is that the bounds may not be very tight even if the two retangles donot interset. These also happen similarly for onvex hulls. Below, we presentnew and tighter bounds.Our lower bound omputation is based on the following Lemma.Lemma1. PKi=1px2i + y2i �q(PKi=1 xi)2 + (PKi=1 yi)2Theorem2. Suppose that C is a luster, F is a feature, and P is either the on-vex hull or the minimum bounding retangle of F . Then, AP (C;F ) � d(b(C); P );in other words d(b(C); P ) is a lower bound of AP (C;F ).Clearly, the above lower bound is tighter than the shortest distane betweentwo bounding retangles.Suppose that p is an arbitrary point. For a luster, we use �(p; C) to denotethe maximum distane between p to a point in C. Below is an upper bound ofAP .Theorem3. Suppose that p is an arbitrary point, C is a luster, and F is afeature. Then AP (C;F ) � d(p; F ) + �(p; C).It is lear the right hand side in the inequality of Theorem 3 an be used asan upper bound of AP ; and an be omputed in time O(jF j) one the ompu-tation of �(p; C) is done. We believe that this bound may be tighter than thelongest distane between the minimum bounding retangles. However, we annotgenerally prove this beause the tightness of the upper bound depends on thehoie of p. In our algorithm, we will hoose the entroid of a luster C in theupper bound omputation sine it has to be used to obtain a lower bound. Notethat generally d(b(C); PF ) and d(b(C); F ) respetively in the lower and upperbounds annot replae eah other if F is not a onvex polygon.3.2 Read in the relevant lusterIn Step 1, we �rst read in the luster C0, whih are spei�ed by a user, into bu�er.Then, we ompute the entroid b(C0) and the maximal distane �(b(C0); C0).Clearly, this step takes linear time with respet to the size of C0.3.3 Read in and Filter out FeaturesThis subsetion presents Step 2. Consider that the total size of features to beproessed may be too large to �t in bu�er simultaneously. Features should beread into bu�er bath by bath.Note that in WK, our primary goal is to make a andidate set as lose aspossible to the atual solution; this means a small set of andidates will be



expeted to be left in the main memory after �ltering step. Therefore, we maystore the detail of the andidates in the main memory for a further proessing.Partiularly, the �ltering step developed in CWK is to:1. initialize the andidate set by assigning the �rst k features, and then,2. examine the rest of the features one by one to determine whether or notthey are andidates. In ase that a new andidate is added, we should alsohek whether or not ertain features inluded in the andidate set shouldbe removed.The following lemma an be immediately veri�ed.Lemma4. For a luster C and a feature F with weight WF ,WF d(b(C); PF ) �WAP (C;F ) �WF (d(p; F ) + �(p; C)):Lemma 4 means that WF d(b(C); PF ) is the lower bound of WAP (C;F ) de-noted by LBF , while WF (d(p; F ) + �(p; C)) is the upper bound of WAP (C;F )denoted by UBF .Lemma5. Suppose � is a set of andidate features, Y is the k'th smallestUBF for every F 2 �. Then, F 0 is a feature in the solution of WK only ifWAP (C;F 0) � Y . Thus, LBF 0 � Y .Suppose that a new feature F is proessed, Lemma 5 says that if LBF forF is greater than Y , than F should not be onsidered as part of the solution ofWK.Consider the situation that a new F is added to � and the Y is updated(hanged smaller). Then, a feature F 0 in � may no longer be a andidate ifLBF 0 > Y ; and thus we have to remove F 0 from �. A naive way to do this is tosan the whole � to determine whether or not there is feature to be removed.To speed up this proess, we an divided � into two parts A and B, where Bis the set of andidates to be removed. We make A and B two ordered linkedlists to store the andidates, let A has the �xed length of k, and use X to storethe urrent largest lower bound of F in A. Eah element F in A or B stores theidenti�er FID, LBF and UBF , and the spatial desription of F . A and B areinitially set to empty. The elements in A and B are sorted on the lexiographiorder of (LBF ; UBF ) for eah F .Spei�ally, to proess a F , CWK �rst omputes the values of LBF and UBFforWAP (C;F ). Then, add the �rst k features to A aording to a lexiographiorder of (LBF ; UBF ). For the rest of the features, if LBF � Y , it will be aandidate and kept in A or B. More spei�ally, F will be added to A in aproper position if (LBF ; UBF ) < (LBF 0 ; UBF 0), where F 0 is the last elementof A; and then F 0 will be moved to B. When (LBF ; UBF ) � (LBF 0 ; UBF 0), Fwill be added to B. One a new F is added to the A or B, X and Y should beupdated. Eah time after Y is redued, we also need to hek B to remove thosefeatures whose lower bounds are bigger than Y . Below is a preise desriptionof Step 2.



Step 2 in CWK:A ;; B  ;;Read in features;for the �rst k features in � dof ompute lower and upper bounds LBF and UBF for eah feature F ;keep them in A and ompute X and Y ; g� = � - f the �rst k features in � g;for eah F 2 � dof ompute LBF and UBF ;if LBF < Y thenif LBF > X or (LBF = X and UBF � Y ) then B  F elsef move last element of A into B;A F ;Update X and Y ;if Y redued then remove features F 2 B with UBF > Y ; ggOne a bath of features are proessed by the above proedure, we do notkeep them in bu�er exept the andidate features in A and B.3.4 Preise ComputationAfter �ltering proess in Step 2, the full information of remaining features forsolving WK is kept in A and B. Then, we apply this information to perform apreise omputation of WAP values using brute-fore method.3.5 Complexity of CWKIn Step 1, we read in the user spei�ed luster C0 and do some relevant ompu-tation, this step takes linear time with respet to the size of C0.In Step 2, we do the �ltering proess to read in and �lter out features, themain expenses here are to ompute the lower and upper bounds ofWAP for eahF , and to possibly insert a F to A or B. These together run in O(Pni=1 jFij +n log(jAj+ jBj)), here n is the number of total features.Step 3 takes time O(PF2(A[B) jCjjF j) to ompute WAP for the remainingfeatures.Note that the brute-fore algorithm runs in time O(Pni=1 jCjjFij). Clearly,in pratie, the time omplexity of the brute-fore method is muh higher thanthat of CWK, beause jA[Bj is muh smaller than n. This is on�rmed by ourexperiment results in Setion 4.3.6 Variations of CWKWe implement the algorithm CWK in three di�erent modes in order to evaluatethe performane. The di�erenes are the bounding shapes of a feature to be



taken while doing the �ltering proess. The �rst mode is denoted by CWK-R,whih uses only minimal bounding retangles of features to ompute the lowerand upper bounds of WAP (C;F ). An alternative mode to CWK-R is to use theminimum bounding onvex hulls instead of the minimal bounding retangles, wedenote this mode by CWK-P. The third mode, denoted by CWK-RP, adopts amultiple-�ltering tehnique: 1) minimal bounding retangles are �rstly used toobtain the ordered linked list A and B, and then, 2) the minimum boundingonvex hulls are omputed for features stored in A and B to repeat Step 2 toget two new ordered linked list A0 and B0 before proessing Step 3.In next setion, we will report our experiment results regarding the perfor-mane of the brute-fore method, CWK-P, CWK-R, and CWK-RP.4 Implementation and Experiment ResultsThe brute-fore method and the three modes of CWK algorithm have been im-plemented by C++ on a Pentium I/200 with 128 MB of main memory, runningWindow-NT 4.0. In our experiments, we evaluated the algorithms for eÆienyand salability. Our performane evaluation is basially foused on Step 2 on-wards, beause the methods [3℄ of reading in lusters and features are not ourontribution. Therefore, in our experiment we reord only the CPU time butexlude I/O osts.In the experiments below, we adopt a ommon set of parameters: 1) a featurehas 30 edges on average, 2) a luster has 200 points on average, and 3) thefeatures are grouped into 20 groups.In our �rst experiment, we generate a database with 50 lusters and 5000features, and k = 5. We implement our algorithm for eah luster. The exper-iment results depited in Figure 1 are the average time. Note the algorithmCWK-P, CWK-R, CWK-RP are respetive abbreviated to \P", \R", \R-P" inthe diagram.From the �rst experiment, we an onlude that the brute-fore method ispratially very slow. Another appearane is that CWK-P is slower than CWK-R. Intuitively this is beause that in CWK-P, the omputation of a lower boundfor eah feature is more expensive than that in CWK-R. We also observed thatCWK-RP appears the most eÆient. This beause that the seond �ltering phasein CWK an still �lter out some features; and thus the number of features leftfor the preise omputation is redued. In short, we believe that CWK-P shouldbe intuitively and signi�antly slower than CWK-R and CWK-RP when thenumber of features inreases; this has been on�rmed by the seond experiment.The seond and third experiments have been undertaken through two di-mensions. In the seond experiment, we �x the k to be 15 while the numberof features varies from 5000 to 50,000. Again, we run the 3 algorithms for eahluster and reord the average time. The results are depited in Figure 2.In the third experiment, we �x the number of features to be 50; 000 while kvaries from 5 to 75. Eah algorithm has been run against eah luster and theaverage time is reorded. The experiment results are depited in Figure 3.
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